Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(31): 9238-9251, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29989819

RESUMO

The development of protein-based hydrogels for tissue engineering applications is often limited by their mechanical properties. Herein, we present the facile fabrication of tough regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite hydrogels by a photochemical cross-linking method. The RSF/GO composite hydrogels demonstrated soft and adhesive properties during initial stages of photocrosslinking (<2 min), which is not observed for the pristine RSF hydrogel, and rendered a tough and nonadhesive hydrogel upon complete cross-linking (10 min). The composite hydrogels exhibited superior tensile mechanical properties, increased ß-sheet content, and decreased chain mobility compared to that of the pristine RSF hydrogels. The composite hydrogels demonstrated Young's modulus as high as ∼8 MPa, which is significantly higher than native cartilage (∼1.5 MPa), and tensile toughness as high as ∼2.4 MJ/m3, which is greater than that of electroactive polymer muscles and at par with RSF/GO composite membranes fabricated by layer-by-layer assembly. Small-angle scattering study reveals the hierarchical structure of photocrosslinked RSF hydrogels to comprise randomly distributed water-poor (hydrophobic) and water-rich (hydrophilic) regions at the nanoscale, whereas water pores and channels exhibiting fractal-like characteristics at the microscale. The size of hydrophobic domain (containing ß-sheets) was observed to increase slightly with GO incorporation and/or alcohol post-treatment, whereas the size of the hydrophilic domain (intersheet distance containing random coils) was observed to increase significantly, which influences/affects water uptake capacity, cross-link density, and mechanical properties of hydrogels. The presented results have implications for both fundamental understanding of the structure-property relationship of RSF-based hydrogels and their technological applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...